

INSTITUTE OF AERONAUTICAL ENGINEERING

Dundigal, Hyderabad - 500 043

ELECTRICAL AND ELECTRONICS ENGINEERING

QUESTION BANK

Course Name	:	ELECTRONIC DEVICES AND CIRCUITS
Course Code	:	A30404
Class	:	II B. Tech I Semester
Branch	:	EEE
Year	:	2016 - 2017
Course	:	Mr. B. Naresh, Assistant Professor, Department of ECE
Coordinator		
Course Faculty	:	Mr. B. Naresh, Assistant Professor, Department of ECE

OBJECTIVES

To meet the challenge of ensuring excellence in engineering education, the issue of quality needs to be addressed, debated and taken forward in a systematic manner. Accreditation is the principal means of quality assurance in higher education. The major emphasis of accreditation process is to measure the outcomes of the program that is being accredited.

In line with this, Faculty of Institute of Aeronautical Engineering, Hyderabad has taken a lead in incorporating philosophy of outcome based education in the process of problem solving and career development. So, all students of the institute should understand the depth and approach of course to be taught through this question bank, which will enhance learner's learning process.

S.No	QUESTION	Blooms taxonomy level	Course Outcome
	UNIT-I P-N JUNCTION DIODE		
	SHORT ANSWER QUESTIONS		
1	Define Electronics?	Remember	1
2	Explain about forward bias of diode?	Understand	1
3	Explain about reverse bias of diode?	Understand	1
4	Write the Applications of diode?	Understand	3
5	Draw the V-I characteristics of diode?	Understand	2
6	List the differences between ideal diode and practical diode?	Remember	1
7	Define diffusion capacitance?	Remember	2
8	Define transition capacitance?	Remember	2
9	Define static resistance?	Remember	2
10	Define dynamic resistance	Remember	2
11	Explain the load line Analyze of diode?	Understand	2
12	Write the equation of diode current	Remember	2
13	Define Fermi level?	Remember	1
14	Sketch V-I characteristics of a PN diode for the following conditions: Rf= 0 , Rr = 0, V γ =0	Remember	2

15	Sketch V-I characteristics of a PN diode for the following	Understand	2
	conditions: $R_F = 0, R_r = 0, V\gamma = 0.6$		
16	Define reverse saturation current?	Remember	1
17	Define cut-in voltage?	Remember	1
18	Write the differences between avalanche and zener breakdown mechanisms?	Remember	1
19	Define zener breakdown mechanism?	Remember	1
20	Define depletion region?	Remember	1
21	Explain the temperature dependence of VI characteristics of PN diode?	Understand	1
22	Define doping?	Remember	1
23	Explain about extrinsic semiconductor	Understand	1
24	Explain about unbiased PN junction?	Understand	1
25	Write down the expression for diode current?	Remember	1
26	Define drift current?	Remember	1
27	List the Applications of Zener diode?	Analyze	1
28	Define forbidden energy gap?	Remember	1
29	With appropriate circuit diagram explain the DC load line Analyze of semiconductor diode?	Analyze	1
30	Define Peak Inverse voltage of a diode?	Remember	1
31	What is the principle of operation of photodiode?	Remember	1
32	Give the principle of operation of Light Emitting Diode?	Analyze	1
33	Define diffusion current?	Remember	1
34	List the Applications of LED.	Analyze	1
35	Draw the two transistor equivalent circuit of a SCR	Analyze	1
38	Define holding current in a SCR?	Remember	1
39	Draw the V-I characteristics of SCR?	Analyze	2
40	Explain why a SCR is operated only in the forward biased condition?	Understand	2
41	Explain how triggering of an SCR can be controlled by the gate signal supplied?	Understand	1
42	List the Applications of varactor diode?	Analyze	1
43	Define photodiode?	Remember	
44	Define DIAC?	Remember	1
45	Define TRIAC?	Remember	1
	LONG ANSWER QUESTIONS	1	
1	Define Fermi level? By indicating the position of Fermi level in intrinsic, n-type and p-type semiconductor, explain its significance in semiconductors?	Remember	1
2	Analyze between drift and diffusion current in a semiconductor. State continuity equation?	Analyze	1
3	Sketch the V-I characteristics of p-n junction diode for forward bias voltages. Analyze between the incremental resistance and the apparent resistance of the diode?	Evaluate	2
4	What is potential energy barrier of the p-n junction? How does it arise and what is its order of magnitude?	Remember	2
5	Explain the temperature dependence of VI characteristics of PN diode?	Understand	2
6	Derive an expression for total diode current starting from Boltzmann relationship in terms of the applied voltage?	Remember	2
7	Explain the V-I characteristics of Zener diode and Analyze between Avalanche and Zener Break downs?	Understand	2
8	Explainin detail, the variation of following semiconductor parameters	Understand	1

9 Explance 9 Defining 10 revering 11 Explance 11 Explance 12 Differ 13 Differ 14 Explance	 cence between Volt – Ampere characteristics of a single silicon p – n diode and two identical silicon p- n diodes connected in parallel. Avalanch and zener break down mechanisms in the tunneling phenomenon. Explain the characteristics of tunnel 	Understand Remember Understand Analyze Analyze	1 1 1 2 2
9 capace 10 cever 10 rever 11 Explanation 12 1 13 2 14 Explanation 15 What	 in the concept of diode capacitance. Derive expression for transition itance? e depletion region at p-n junction? What is the effect of forward and be biasing of p-n junction on the depletion region? Explain with sary diagrams? in Zener and avalanche breakdown mechanisms in detail? rences between Static and dynamic resistances of a p – n diode. Transition and Diffusion capacitances of a p – n diode rence between Volt – Ampere characteristics of a single silicon p – n diode and two identical silicon p- n diodes connected in parallel. Avalanch and zener break down mechanisms 	Remember Understand Analyze	1 1 2
9 capace 10 cever 10 rever 11 Explanation 12 1 13 2 14 Explanation 15 What	 itance? e depletion region at p-n junction? What is the effect of forward and se biasing of p-n junction on the depletion region? Explain with sary diagrams? in Zener and avalanche breakdown mechanisms in detail? rences between Static and dynamic resistances of a p – n diode. Transition and Diffusion capacitances of a p – n diode rence between Volt – Ampere characteristics of a single silicon p – n diode and two identical silicon p- n diodes connected in parallel. Avalanch and zener break down mechanisms in the tunneling phenomenon. Explain the characteristics of tunnel 	Remember Understand Analyze	1 1 2
10 rever neces 11 Explanation 12 Diffe 12 Diffe 13 2 14 Explanation 15 What	 biasing of p-n junction on the depletion region? Explain with sary diagrams? in Zener and avalanche breakdown mechanisms in detail? rences between Static and dynamic resistances of a p – n diode. Transition and Diffusion capacitances of a p – n diode rence between Volt – Ampere characteristics of a single silicon p – n diode and two identical silicon p- n diodes connected in parallel. Avalanch and zener break down mechanisms in the tunneling phenomenon. Explain the characteristics of tunnel 	Understand Analyze	1 2
neces 11 Explanation 12 Difference 12 Difference 13 Difference 14 Explanation 15 What	 sary diagrams? in Zener and avalanche breakdown mechanisms in detail? rences between Static and dynamic resistances of a p – n diode. Transition and Diffusion capacitances of a p – n diode rence between Volt – Ampere characteristics of a single silicon p – n diode and two identical silicon p- n diodes connected in parallel. Avalanch and zener break down mechanisms in the tunneling phenomenon. Explain the characteristics of tunnel 	Understand Analyze	1 2
11 Explanation 12 Diffe 12 Diffe 13 Diffe 14 Explanation 15 What	 in Zener and avalanche breakdown mechanisms in detail? rences between Static and dynamic resistances of a p – n diode. Transition and Diffusion capacitances of a p – n diode rence between Volt – Ampere characteristics of a single silicon p – n diode and two identical silicon p- n diodes connected in parallel. Avalanch and zener break down mechanisms in the tunneling phenomenon. Explain the characteristics of tunnel 	Analyze	2
Diffe 12 1 12 1 13 1 14 Explanding 15 Wha	 rences between Static and dynamic resistances of a p – n diode. Transition and Diffusion capacitances of a p – n diode rence between Volt – Ampere characteristics of a single silicon p – n diode and two identical silicon p- n diodes connected in parallel. Avalanch and zener break down mechanisms in the tunneling phenomenon. Explain the characteristics of tunnel 	Analyze	2
12 Diffe 13 Diffe 13 2 14 Expla diode	 Static and dynamic resistances of a p – n diode. Transition and Diffusion capacitances of a p – n diode rence between Volt – Ampere characteristics of a single silicon p – n diode and two identical silicon p- n diodes connected in parallel. Avalanch and zener break down mechanisms in the tunneling phenomenon. Explain the characteristics of tunnel 		
Diffe 13 2 14 Explanding 15 Wha	 Transition and Diffusion capacitances of a p - n diode rence between Volt - Ampere characteristics of a single silicon p - n diode and two identical silicon p- n diodes connected in parallel. Avalanch and zener break down mechanisms in the tunneling phenomenon. Explain the characteristics of tunnel 		2
13 14 15 Diffe Diffe Diffe Diffe Diffe Diffe Diffe Diffe	 rence between Volt – Ampere characteristics of a single silicon p – n diode and two identical silicon p- n diodes connected in parallel. Avalanch and zener break down mechanisms in the tunneling phenomenon. Explain the characteristics of tunnel 	Analyze	2
13 2 14 Expl: 15 Wha	 Volt – Ampere characteristics of a single silicon p – n diode and two identical silicon p- n diodes connected in parallel. Avalanch and zener break down mechanisms in the tunneling phenomenon. Explain the characteristics of tunnel 	Analyze	2
14 Expl diode	 two identical silicon p- n diodes connected in parallel. Avalanch and zener break down mechanisms in the tunneling phenomenon. Explain the characteristics of tunnel 	Analyze	
14 Explaided	Avalanch and zener break down mechanisms in the tunneling phenomenon. Explain the characteristics of tunnel		
14 Explaided	in the tunneling phenomenon. Explain the characteristics of tunnel	1 1	
14 diode		<u> </u>	2
15 Wha	with the help of necessary energy band diagrams?	Understand	2
	is the photo diode? Explain its principle of operation and Applications		2
		Remember	-
	in the construction and working of photo diode?	Understand	2
	in about Varactor diode with necessary sketches?	Understand	2
_	h the static characteristics and firing characteristics of SCR and explain	Oliderstalld	2
	ape of the curve?		2
	in Schottky diode with necessary sketches?	Understand	2
*		Understand	2
	in how a variable capacitance can be built using a varactor diode?	Understand	
	e the following terms for a PN diode 1. Dynamic resistance ad line. 3. Difference capacitance. 4. Reverse saturation current.	Remember	2
2. L0	· · · · · · · · · · · · · · · · · · ·	<u> </u>	
1 Et al	ANALYTICAL QUESTIONS the value of D.C. resistance and A.C resistance of a Germanium	<u> </u>	
1 Find	on diode at 25° C with reverse saturation current, $I_{o} = 25\mu$ A and at an	Analyze	2
	bin diode at 25° C with reverse saturation current, $r_{0}^{\circ} = 25 \mu T$ and at an r_{0}° voltage of 0.2V across the diode?	Anaryze	
2 The	reverse saturation current of a silicon p - n function diode at an		2
opera	ting temperature of 27 ⁰ C is 50 nA. Estimate the dynamic forward and	Evaluate	
	is resistances of the diode for applied voltages of 0.8 V and -0.4 V	Evaluate	
	ctively?		
	Junction germanium diode has a reverse saturation current of 0.10 μ A		2
	room temperature of 27^{0} C.It is observed to be 30μ A, when the room	Evaluate	
	rature is increased. Evaluate the room temperature?		
	the factor by which the reverse saturation current of a silicon diode will which the temperature is increased from 27° C to 82° C2	Remember	2
	ultiplied when the temperature is increased from 27° C to 82° C? mine the values of forward current in the case of P-N junction diode,	<u> </u>	2
	$_{0}$ =10 μ A Vf=0.8V at T=300 ⁰ K.Assume silicon diode?	Evaluate	L
	$_{0}$ junction diode has a reverse saturation current of 30 μ A at a	<u> </u>	2
	rature of 125° C. At the same temperature, find the dynamic resistance	Remember	2
	2 V bias in forward and reverse direction?		
	oltage across a silicon diode at room temperature of 300°K is 0.7 V		2
7 The	2 ma current flows through it. If the voltage increases to 0.75 v,	Evaluate	
		1 1	
when Eval	ate the diode current assuming $V_T=26mv$.		
8 Deter	tate the diode current assuming V_T =26mv. mine the dynamic forward and reverse resistance of p-n junction		2
8 Deter silico	ate the diode current assuming $V_T=26mv$.	Evaluate	2
when Evalue 8 Deter silico μA?	tate the diode current assuming V_T =26mv. mine the dynamic forward and reverse resistance of p-n junction a diode when the applied voltage is 0.25 V at T=3000K with give I0=2	Evaluate	
when Evalue 8 Detensilico μA? 9 Find	tate the diode current assuming V_T =26mv. mine the dynamic forward and reverse resistance of p-n junction a diode when the applied voltage is 0.25 V at T=3000K with give I0=2 the value of D.C. resistance and A.C resistance of a Germanium		2
when Evalue 8 Detensilico μA? 9 Find junct	tate the diode current assuming $V_T=26mv$. mine the dynamic forward and reverse resistance of p-n junction a diode when the applied voltage is 0.25 V at T=3000K with give I0=2 the value of D.C. resistance and A.C resistance of a Germanium on diode at 30 ^o C with reverse saturation current, $I_o = 10\mu A$ and at an	Evaluate Analyze	
when Evalue 8 Deter silico μA? 9 Find junct applie	tate the diode current assuming V_T =26mv. mine the dynamic forward and reverse resistance of p-n junction a diode when the applied voltage is 0.25 V at T=3000K with give I0=2 the value of D.C. resistance and A.C resistance of a Germanium		

	the diade for applied voltages of 0 CV and 0.0 V and 1.0	<u>г</u>	
1 1	the diode for applied voltages of 0.6 V and -0.2 V respectively?		2
11	A P-N junction germanium diode has a reverse saturation current of 10μ A at the room temperature of 27^{0} C.It is observed to be 40μ A,when the room	Evaluate	2
	temperature is increased. Evaluate the room temperature?	Evaluate	
12	Find the factor by which the reverse saturation current of a silicon diode will	D	2
	get multiplied when the temperature is increased from 30° C to 42° C?	Remember	
13	Determine the values of forward current in the case of P-N junction diode,	Evaluate	2
	with $I_0=10 \ \mu A \ Vf=0.8V$ at $T=300^{\circ}K$. Assume germanium diode?	L'unduite	
14	A p-n junction diode has a reverse saturation current of 20 μ A at a temperature of 100 ^o C. At the same temperature, find the dynamic resistance	Remember	2
	for 0.4 V bias in forward and reverse direction?	Kelliellibei	
15	The circuit shown in Figure (3.2) uses identical diodes for which ID = 1 mA		2
	at $VD = 0.7 V$ with $n = 1$. At 20°C, voltage V is measured by a very high		
	resistance meter to be 0.1 V. By what factor does the reverse leakage current		
	of these diodes exceed Is? Estimate the value of V when the temperature is		
	raised by $50 \circ C$.		
		Evaluate	
	UNIT -2		
	RECTIFIERS AND FILTERS		
	SHORT ANSWER QUESTIONS		
1	Define rectifier?	Remember	4
2	Define ripple factor?	Remember	3
3	Compare the rectifier and regulator?	Understand	3
4	Define transformer utilization factor?	Remember	3
5	Define efficiency?	Remember	3
6	Define full wave rectifier?	Remember	3
7	What are the merits of full wave rectifier?	Apply	3
8	List the disadvantages of full wave rectifier?	Analyze	3
9	Draw the block diagram of shunt voltage regulator?	Remember	3
10	Draw the block diagram of series voltage regulator?	Remember	3
11	Define regulator?	Remember	3
12	Draw the circuit diagram of half wave rectifier?	Create	4
13	Draw the circuit diagram of full wave rectifier?	Evaluate	4
14	Define line regulation and load regulation?	Remember	4
15	Give the advantages and disadvantages of HWR and FWR?	Remember	4
16	What is the need for a filter in rectifier?	Remember	4
	What is the need for voltage regulators? What are the drawbacks of		4
17	unregulated power supply?	Remember	
18	Draw the circuit diagram of π -section filter?	Remember	4
19	Explain about zener regulator?	Understand	4
20	Draw the circuit diagram of L-section filter?	Understand	4
	LONG ANSWER QUESTIONS	<u> </u>	
1	Draw the block diagram of a regulated power supply and explain its	Understand	3
	operation?		
2	Draw the circuit of a half-wave-rectifier and find out the ripple factor, %	Analyze	4

	regulation? Efficiency and PIV?		
3	Draw the circuit of bridge rectifier and explain its operation with the help of	Analyze	4
	input and output waveforms?	7 mary 20	•
4	With suitable diagrams, explain the working of centre-tapped full wave	Understand	4
	rectifier. Derive expressions for V _{DC} , I _{DC} , V _{rms} and I _{rms} for it?		
5	Explain the relative merits and demerits of all the rectifiers?	Understand	3
6	Compare the performance of Inductor filter and capacitor filter?	Understand	3
7	Derive the expression for the ripple factor of π -Section filter when used with a Half-wave-rectifier. Make necessary approximations?	Analyze	4
8	Derive the expression for the ripple factor of π -Section filter when used with a Full-wave-rectifier. Make necessary approximations?	Analyze	4
9	Define Ripple factor and form factor. Establish a relation between them?	Remember	3
10	Explain the necessity of a bleeder resistor in an L – section filter used with a Full Wave filter?	Understand	4
11	List out the merits and demerits of Bridge type Full Wave rectifiers over centre tapped type Full Wave rectifiers?	Analyze	3
12	Explain about multiple L-section and multiple π -section filters?	Understand	4
13	Compare the performance of series inductor, 1-section and π -section filters?	Understand	4
14	Explain the operation of inductor filter and derive expression for ripple	Understand	4
15	factor?(FWR) Explain the operation of L-section filter and derive expression for ripple	Understand	4
15	factor?(FWR)	Understand	4
	ANALYTICAL QUESTIONS		
1	A HWR circuit supplies 50mA DC current to a 200 Ω load. Find the DC		4
1	output voltage, PIV rating of a diode and the r.m.s. voltage for the	Evaluate	4
	transformer supplying the rectifier?		
2	A full wave bridge rectifier having load resistance of 100Ω is fed with 220V,		
	50Hz through a step-down transformer of turns ratio 11:1. Assuming the diodes ideal, find i) DC output voltage ii)Peak inverse voltage iii) rectifier	Evaluate	4
	efficiency.		
3	Determine the ripple factor of an L-section filter comprising a 10H choke		4
5	and 8μ F capacitor, used with a FWR. The DC voltage at the load is 50V.	Evaluate	4
	Assume the line frequency as 50Hz?	Lvuluute	
4	A bridge rectifier uses four identical diodes having forward resistance of 5Ω		4
	each. Transformer secondary resistance is 5 ohms and the secondary voltage		
	is 30V (rms). Determine the dc output voltage for $I_{dc} = 200$ mA and value of	Evaluate	
	the output ripple voltage?		
5	A 230 V, 60Hz voltage is applied to the primary of a 5:1 step down, center		4
_	tapped transformer used in a full wave rectifier having a load of 900 Ω . If the		
	diode resistance and the secondary coil resistance together have a resistance		
	of 100 Ω , determine	. .	
	i) DC voltage across the load.	Evaluate	
	ii) DC current flowing through the load.		
	iii) DC power delivered to the load.		
	iv) PIV across each diode.		
6	A HWR circuit supplies 100mA DC current to a 250Ω load. Find the DC		4
-	output voltage, PIV rating of a diode and the r.m.s. voltage for the	Evaluate	
	transformer supplying the rectifier?		
7	A full wave rectifier circuit uses two silicon diodes with a forward		4
	resistance of 20 Ω each. A DC voltmeter connected across the load of 1K Ω		
	reads 55.4 volts.		
	Calculate	Evaluate	
	i) I _{rms} ii) Average voltage across each diode		
	iii) ripple factor iv) Transformer secondary voltage rating.		
8		Domomhor	4
0	What is the ripple factor if a power supply of 220 V, 50 Hz is to be Full	Remember	

[9+6]

	Wave rectified and filtered with a 220µF capacitor before delivering to a		
	resistive load of 120Ω ? Compute the value of the capacitor for the ripple		
	factor to be less than 15%.		
0	For the Zener diode circuit shown in Figure 1, determine V_L , V_R , I_Z & R?		4
9	$V_{i} = 16V \xrightarrow{R} V_{R} \xrightarrow{-} V_{Z_{1}} = 10V \xrightarrow{V_{I_{Z}}} \xrightarrow{+} V_{R_{L}} \xrightarrow{+} V_{R_{L}} \xrightarrow{+} V_{R_{L}} \xrightarrow{+} V_{L} \xrightarrow{-} V_{L}$	Evaluate	
10	In a Zener diode regulator, the supply voltage = 300V, $V_z = 220V$, $I_z = 15$ mA and load current = 25mA. Determine the value of resistor required to be connected in series with the Zener diode?	Evaluate	4
11	A bridge rectifier uses four identical diodes having forward resistance of 5Ω		4
	each. Transformer secondary resistance is 5Ω and the secondary voltage of	D	
	$30V(\text{rms})$. Determine the dc output voltage for $I_{DC}=200\text{mA}$ and the value of	Evaluate	
	the ripple voltage.		
12	A full wave bridge rectifier having load resistance of 1000Ω is fed with 220V , 50Hz through a step-down transformer of turns ratio 11:1. Assuming the diodes ideal, find i) DC output ii) rectifier efficiency.	Evaluate	4
13	Determine the ripple factor of an L-section filter comprising a 20H		4
	choke and 10μ F capacitor, used with a FWR. The DC voltage at the	Evaluate	
14	load is 40V. Assume the line frequency as 50Hz?A bridge rectifier uses four identical diodes having forward resistance of		4
17	10Ω each. Transformer secondary resistance is 5 ohms and the		-
	secondary voltage is 20V (rms). Determine the dc output voltage for I_{dc}	Evaluate	
	= 100 mA and value of the output ripple voltage?		
15	What is the ripple factor if a power supply of 220 V, 50 Hz is to be Full Wave rectified and filtered with a 20μ F capacitor before delivering to a resistive load of 1000Ω ? Compute the value of the capacitor for the ripple factor to be less than 10%.	Remember	4
	UNIT-3		
	BIPOLAR JUNCTION TRANSISTOR AND UJT		
	BIPOLAR JUNCTION TRANSISTOR AND UJT SHORT ANSWER QUESTIONS		
1		Remember	5
1 2	SHORT ANSWER QUESTIONS	Remember Understand	5
	SHORT ANSWER QUESTIONS Define Transistor?		
2	SHORT ANSWER QUESTIONS Define Transistor? What is a bipolar junction transistor? How are its terminals named? Draw the symbols of NPN and PNP transistor?	Understand	5
2 3	SHORT ANSWER QUESTIONS Define Transistor? What is a bipolar junction transistor? How are its terminals named?	Understand Understand	5 5
2 3 4	SHORT ANSWER QUESTIONSDefine Transistor?What is a bipolar junction transistor? How are its terminals named?Draw the symbols of NPN and PNP transistor?Explain the operation of BJT and its types?	Understand Understand Understand	5 5 5
2 3 4 5	SHORT ANSWER QUESTIONSDefine Transistor?What is a bipolar junction transistor? How are its terminals named?Draw the symbols of NPN and PNP transistor?Explain the operation of BJT and its types?Explain the breakdown in transistor?	UnderstandUnderstandUnderstandUnderstand	5 5 5 5 5
2 3 4 5 6	SHORT ANSWER QUESTIONSDefine Transistor?What is a bipolar junction transistor? How are its terminals named?Draw the symbols of NPN and PNP transistor?Explain the operation of BJT and its types?Explain the breakdown in transistor?Explain the transistor switching times?Define Transistor current?	UnderstandUnderstandUnderstandUnderstandUnderstand	5 5 5 5 5 5
2 3 4 5 6 7	SHORT ANSWER QUESTIONSDefine Transistor?What is a bipolar junction transistor? How are its terminals named?Draw the symbols of NPN and PNP transistor?Explain the operation of BJT and its types?Explain the breakdown in transistor?Explain the transistor switching times?Define Transistor current?Define early effect or base width modulation?	UnderstandUnderstandUnderstandUnderstandUnderstandRemember	5 5 5 5 5 5 5
2 3 4 5 6 7 8 9	SHORT ANSWER QUESTIONSDefine Transistor?What is a bipolar junction transistor? How are its terminals named?Draw the symbols of NPN and PNP transistor?Explain the operation of BJT and its types?Explain the breakdown in transistor?Explain the transistor switching times?Define Transistor current?Define early effect or base width modulation?Explain about transistor amplifier?	UnderstandUnderstandUnderstandUnderstandRememberRememberUnderstand	5 5 5 5 5 5 5 5
2 3 4 5 6 7 8 9 10	SHORT ANSWER QUESTIONSDefine Transistor?What is a bipolar junction transistor? How are its terminals named?Draw the symbols of NPN and PNP transistor?Explain the operation of BJT and its types?Explain the breakdown in transistor?Explain the transistor switching times?Define Transistor current?Define early effect or base width modulation?Explain about transistor amplifier?Define current amplification factor?	UnderstandUnderstandUnderstandUnderstandUnderstandRememberRememberUnderstandRememberRememberRememberRemember	5 5 5 5 5 5 5 5 5 5
2 3 4 5 6 7 8 9 10 11	SHORT ANSWER QUESTIONSDefine Transistor?What is a bipolar junction transistor? How are its terminals named?Draw the symbols of NPN and PNP transistor?Explain the operation of BJT and its types?Explain the breakdown in transistor?Explain the breakdown in transistor?Explain the transistor switching times?Define Transistor current?Define early effect or base width modulation?Explain about transistor amplifier?Define current amplification factor?When does a transistor act as a switch?	UnderstandUnderstandUnderstandUnderstandRememberRememberUnderstandRememberUnderstandUnderstandUnderstandUnderstandUnderstandUnderstandUnderstand	5 5 5 5 5 5 5 5 5 5 5
2 3 4 5 6 7 8 9 10 11 12	SHORT ANSWER QUESTIONSDefine Transistor?What is a bipolar junction transistor? How are its terminals named?Draw the symbols of NPN and PNP transistor?Explain the operation of BJT and its types?Explain the breakdown in transistor?Explain the transistor switching times?Define Transistor current?Define early effect or base width modulation?Explain about transistor amplifier?Define current amplification factor?When does a transistor act as a switch?Explain about the various regions in a transistor?	UnderstandUnderstandUnderstandUnderstandUnderstandRememberRememberUnderstandUnderstandUnderstandUnderstandUnderstandUnderstandUnderstandUnderstand	5 5 5 5 5 5 5 5 5 5 5 5 5
2 3 4 5 6 7 8 9 10 11	SHORT ANSWER QUESTIONSDefine Transistor?What is a bipolar junction transistor? How are its terminals named?Draw the symbols of NPN and PNP transistor?Explain the operation of BJT and its types?Explain the breakdown in transistor?Explain the breakdown in transistor?Explain the transistor switching times?Define Transistor current?Define early effect or base width modulation?Explain about transistor amplifier?Define current amplification factor?When does a transistor act as a switch?	UnderstandUnderstandUnderstandUnderstandRememberRememberUnderstandRememberUnderstandUnderstandUnderstandUnderstandUnderstandUnderstandUnderstand	5 5 5 5 5 5 5 5 5 5 5 5 5 5

16	Define active region?	Remember	6
17	Describes the various current components in a BJT?	Remember	6
18	Define amplifier?	Remember	6
19	Draw the hybrid model of a CB configuration?	Remember	6
20	Write a note on transistor construction?	Understand	6
21	Calculate the values of collector current and base current for a transistor with α_{dc} = 0.99, I _{CBO} = 10µA and I _E =8mA.	Apply	6
22	If $\beta = 100$, $I_{CBO} = 10\mu A$ and $I_B = 80 \mu A$ find I_E	Apply	6
23	If α_{dc} = 0.98, I _{CBO} = 10µA and I _B = 100 µA find I _E	Apply	6
24	Find α_{dc} If $\beta = 50$.	Apply	6
25	Find β if $\alpha_{dc} = 0.995$	Apply	6
26	Calculate the values of collector current and base current for a transistor with α_{dc} = 0.98, I _{CBO} = 10µA and I _E =6mA.	Apply	6
27	If $\beta = 80$, $I_{CBO} = 10\mu A$ and $I_B = 90 \mu A$ find I_E	Apply	6
28	If α_{dc} = 0.96, I _{CBO} = 5µA and I _B = 110 µA find I _E	Apply	6
29	Find α_{dc} If $\beta = 100$.	Apply	6
30	Find β if $\alpha_{dc} = 0.945$	Apply	6
	MID-2		
1	Draw the small signal model of a CE configuration?	Remember	6
2	Define h _{ie} and h _{fe} in CE configuration?	Remember	6
3	Define hoe and h _{re} in CB configuration?	Remember	6
4	What are the differences between BJT and UJT?	Understand	6
5	Draw the equivalent circuit of a UJT	Understand	6
6	Draw the V-I characteristics of UJT?	Analyze	6
7	What do you mean by regeneration in UJT?	Understand	6
8	Explain peak voltage of UJT?	Understand	6
9	Explain vally voltage of UJT?	Remember	6
10	Define h _{ie} and h _{fe} in CC configuration?	Remember	6
11	Define h _{ie} and h _{fe} in CB configuration?	Remember	6
12	Define hoe and h _{re} in CE configuration?	Remember	6
13	Define hoe and h _{re} in CC configuration?	Understand	6
14	Draw the h model for CB configuration?	Understand	6
15	Draw the h model for CC configuration?	Analyze	6
16	Illustrate the working of CE amplifier?	Understand	6
17	Define intrinsic stand -off ratio in UJT?	Remember	6
18	Determine the intrinsic stand-off ratio of UJT, if $R_{BB} = 10K$ ohms and $R_{B2} = 4k$ ohms.	Remember	6
19	Sketch the h-model of CE configuration?	Remember	6
20	Sketch the h-model of CB configuration?	Understand	6
21	Sketch the h-model of CC configuration?	Understand	6
22	Evaluate the intrinsic stand-off ratio of UJT, if $R_{BB} = 20K$ ohms and $R_{B2} = 8k$ ohms.	Analyze	6
23	Determine the base, collector and emitter currents and V_{CE} for a CE circuit, if $V_{CC} = 10V$, $V_{BB} = 4V$, $R_B = 200k$ ohms, $R_C = 2k$ ohms, $\beta = 100$.	Remember	6
24	Determine the R_{B1} for UJT if $\eta = 0.6$, $R_{B2} = 10k$ ohms?	Remember	6
25	Determine the R_{B2} for UJT if $R_{BB} = 10k$ ohms, $R_{B1} = 6k$ ohms?	Remember	6
26	Evaluate the intrinsic stand-off ratio of UJT, if $R_{BB} = 15K$ ohms and $R_{B2} =$	Understand	6

	5k ohms.		
27	Determine the base, collector and emitter currents and V_{CE} for a CE circuit, if $V_{CC} = 12V$, $V_{BB} = 2V$, $R_B = 100k$ ohms, $R_C = 2k$ ohms, $\beta = 50$.	Remember	6
28	Determine the R_{B1} for UJT if $\eta = 0.8$, $R_{B2} = 8k$ ohms?	Remember	6
29	Determine the R_{B2} for UJT if $R_{BB} = 20k$ ohms, $R_{B1} = 4k$ ohms?	Remember	6
30	Determine the base, collector and emitter currents and V_{CE} for a CE circuit, if $V_{CC} = 14V$, $V_{BB} = 4V$, $R_B = 200k$ ohms, $R_C = 4k$ ohms, $\beta = 150$.	Understand	6
	LONG ANSWER QUESTIONS		
1	With a neat diagram explain the various current components in an NPN bipolar junction transistor & hence derive general equation for collector current, I_C ?	Understand	5
2	Define Early-effect; explain why it is called as base-width modulation? Discuss its consequences in transistors in detail?	Remember	5
3	How transistor acts as an amplifier?	Remember	6
4	Draw the input and output characteristics of a transistor in common emitter configurations?	Understand	6
5	Draw the input and output characteristics of a transistor in common base configurations?	Evaluate	6
6	Draw the input and output characteristic of a transistor in common collector configurations?	Understand	6
7	Explain the constructional details of Bipolar Junction Transistor?	Understand	6
8	Derive the relation among α , β and γ ?	Evaluate	6
9	What is thermal runaway in transistors? Obtain the condition for thermal stability in transistors?	Remember	6
10	Describe the significance of the terms, ' α ' and ' β '. Establish a relation between them?	Evaluate	6
11	Explain how the UJT can be used as a negative-resistance device with the aid of static characteristics?	Understand	6
12	Give the construction details of UJT & explain its operation with the help of equivalent circuits?	Understand	6
13	Explain any two construction techniques of construction of transistor?	Understand	6
14	How UJT is acts as a relaxation oscillator?	Understand	6
15	With reference to bipolar junction transistors, define the following terms and explain. Emitter efficiency, Base Transportation factor and Large signal current gain.	Understand	6
	ANALYTICAL QUESTIONS	· · · · ·	
1	Determine the values of I_C and I_E for a transistor with $\alpha_{dc} = 0.99$ and $I_{CBO} = 5\mu$ A, if I_B is measured as 20 μ A?	Evaluate	6
2	Determine the collector current and emitter current for a transistor with $\alpha = 0.99$ and $I_{CBO} = 40\mu A$ when the base current is $19\mu A$?	Evaluate	6
3	The reverse leakage current of the transistor when connected in CB configuration is 0.2 μ A while it is 18 μ A when the same transistor is connected in CE configuration. Determine α and β of the transistor?	Evaluate	6
4	For an NPN transistor with $\alpha_N = 0.98$, $J_{CO} = 2\mu A$ and $I_{EO} = 1.6\mu A$ connected in Common Emitter Configuration, Determine the minimum base current for which the transistor enters into saturation region. V_{CC} and load resistance are given as 12 V and 4.0 K Ω respectively?	Evaluate	6
5	If the base current in a transistor is 20μ A when the emitter current is 6.4mA, what are the values of α_{dc} and $\beta_{dc?}$ Also determine the collector current?	Evaluate	6
6	In a certain transistor, the emitter current is 1.02 times as large as the collector current. If the emitter current is 12 mA, find the base current?	Evaluate	6
7	A)Find α_{dc} foreach of the following values of $\beta dc=50$ and 190. B)Find βdc for each of the following values of $\alpha_{dc=}0.995$ and 0.9765	Evaluate	6

8	In a certain transistor, the emitter current is 1.09 times as large as the collector current. If the emitter current is 10 mA, find the base current?	Evaluate	6
9	For a transistor, $\beta = 100$ and voltage drop across R _c is 2 volts . find the base		
	current . assume $R_C = 2$ Kohms.		
10	Determine the collector current and emitter current for a transistor with $\alpha = 0.00$	Evaluate	6
11	0.99 and $I_{CBO} = 50\mu A$ when the base current is $20\mu A$? A transistor operating in CB configuration has Ic = 2.98mA, Ie = 3mA, Ico =	Evaluate	6
11	0.01 mA. what current will flow the collector circuit, of this transistor when	Evaluate	0
	connected in CE configuration with base current of 30 microamps.		
12	The reverse leakage current of the transistor when connected in CB	Evaluate	6
	configuration is 0.4 μ A while it is 20 μ A when the same transistor is		
13	connected in CE configuration. Determine α and β of the transistor? For a transistor, $\beta = 150$ and voltage drop across R _C is 5 volts . find the base	Evaluate	6
	current . assume $R_C = 5$ Kohms.		0
14	In a certain transistor 99.5% of the carriers injected in to the base cross the	Evaluate	6
	CB junction. If the leakage current is 6 microamps and the collector current is $10m \Lambda$, collected the value of α , amitter current		
15	is 10mA, calculate the value of α , emitter current. In a UJT relaxation oscillator $R_T = 5K$ ohms, $C_T = 0.1 \mu F$ and $\eta = 0.58$ find	Evaluate	6
15	the frequency of oscillations. $K_1 = 5K$ online, $C_1 = 5K$ online, $C_2 = 5K$ online,	Lvaluate	0
	UNIT-IV		I
	TRANSISTOR BIASING AND STABILIZATION		
	SHORT ANSWER QUESTIONS		
1	Define biasing?	Remember	7
2	Why biasing is necessary in BJT amplifiers?	Remember	7
3	Define Q-point?	Remember	7
4	Explain the concept of dc load line with the help of neat diagram?	Remember	7
5	Draw and explain the ac load line?	Evaluate	7
6	Define three stability factors?	Remember	7
7	Which biasing method provides more stabilization amongst the three types of biasing methods?	Apply	7
8	Compare the advantages and disadvantages of biasing schemes?	Remember	7
9	Draw the circuit diagram of a collector to base bias circuit of CE amplifier?	Evaluate	8
10	Write down advantages of fixed bias circuitry?	Understand	7
11	Draw the circuit diagram of a fixed bias circuit of CE amplifier?	Remember	8
12	Draw a circuit employing thermistor compensation?	Apply	8
13	Write down disadvantages of fixed bias circuit?	Apply	8
13	Define thermal runaway?	Remember	7
15	Define thermal resistance?	Remember	7
15	Define thermal stability	Remember	7
10	Draw the circuit diagram of a self-bias circuit of CE amplifier?		8
		Analyze	8
18	Draw the circuit diagram of a emitter feedback bias circuit of CE amplifier? LONG ANSWER QUESTIONS	Apply	0
	Define biasing? Draw the fixed bias circuit and obtain the expression for the		7
1	stability factor?	Remember	
2	Draw the collector-emitter feedback bias circuit and obtain the expression for the stability factor?	Understand	8
3	Draw the self-bias circuit and obtain the expression for the stability factor.	Remember	7
	Discuss the advantages and disadvantages of self-biasing? Draw the emitter feedback bias circuit and obtain the expression for the		8
4	stability factor?	Understand	
5	Define 'Thermal Runaway' in transistors? Derive the condition to prevent	Remember	9

	'Thermal Runaway' in Bipolar Junction Transistors?		
6	Draw the circuit diagram & small signal equivalent of CB amplifier using accurate h-parameter model. Derive expressions for A _V , A _I , R _i and R ₀ ?	Apply	9
7	Draw the circuit diagram of CC amplifier using hybrid parameters and derive expressions for A _I , A _V , R _i , R _O ?	Apply	10
8	What are the compensation techniques used for V_{BE} and I_{CO} . Explain with help of suitable circuits?	Remember	7
9	Define the stability factors with respect to the changes in ICO, VBE and β . Why is the stability with respect to changes in VCE not considered?	Remember	8
10	Justify statement "Potential divider bias is the most commonly used biasing method" for BJT circuits. Explain how bias compensation can be done in such biasing through diodes?	Evaluate	9
11	Determine the significance of operating point, DC and AC load lines to ensure active region operation of a BJT in CE amplifier Apply?	Evaluate	10
12	A Ge transistor having β =100 and Vbe=0.2v is used in a fixed bias amplifier circuit where Vcc=16v,Rc=5 K Ω and R _B = 790 K Ω determine its operating point.	Analyze	8
13	A bipolar junction transistor with $h_{ie} = 1000\Omega$, $h_{fe} = 40$, $h_{re} = 2.6 \times 10^{-4}$, $h_{oe} = 25 \ \mu A/V$, is to drive a load of 500Ω in CB amplifier arrangement. Estimate A_V , A_I ,?	Evaluate	9
14	Design a fixed bias circuit using silicon transistor, with the following specifications: $V_{CC} = 12V$, $V_{BE} = 0.6V$, $V_{CEQ} = 6V$, $I_{CQ} = 4$ mA & $\beta = 70$?	Evaluate	10
15	Design a self-bias circuit using silicon transistor to achieve a stability factor of 10, with the following specifications: $V_{CC} = 15V$, $V_{BE} = 0.7V$, $V_{CEQ} = 6V$, $I_{CQ} = 4 \text{ mA } \& \beta = 40$?	Evaluate	10
	ANALYTICAL QUESTIONS		
1	Design a collector to base bias circuit using silicon transistor to achieve a stability factor of 20, with the following specifications: $V_{CC} = 16V$, $V_{BE} = 0.7V$, $V_{CEQ} = 8V$, Icq=4ma & β =50?	Create	9
2	Draw small signal equivalent circuit of Emitter Follower using accurate h- parameter model. For the emitter follower circuit with $R_s = 0.5 K\Omega$ and $R_L = 5 K\Omega$, calculate R_i , A_V and R_O . Assume, $h_{fe} = 50$, $h_{ie} = 1K$, $h_{oe} = 25 \mu A/V$.		10
3	A silicon NPN transistor has Ico = 20nA and β =150, V _{be} = 0.7V. It is operated in Common Emitter configuration having Vbb = 4.5V, R _b = 150K Ω , R _c = 3K Ω , V _{cc} = 12V. Find the emitter, base and collector currents and also verify in which region the transistor operates. What will happen if the value of the collector resistance is increased to very high values?	Remember	10
4	Design a self bias circuit using silicon transistor to achieve a stability factor of 10, with the following specifications: $V_{CC} = 16V$, $V_{BE} = 0.7V$, $V_{CEQ} = 8V$, $I_{CQ} = 4 \text{ mA } \& \beta = 50$?	Create	9
5	A bipolar junction transistor with $h_{ie} = 1100\Omega$, $h_{fe} = 50$, $h_{re} = 2.4 \times 10^{-4}$, $h_{oe} = 25 \ \mu A/V$, is to drive a load of 1K Ω in Emitter-Follower arrangement. Estimate A_V , A_I , $R_i \& R_0$?	Evaluate	10
6	Design an Emitter bias circuit using silicon transistor to achieve a stability factor of 20, with the following specifications: $V_{CC} = 16V$, $V_{BE} = 0.7V$, $V_{CEQ} = 8V$, $I_{CQ} = 4$ mA & $\beta = 50$.	Create	9
7	A bipolar junction transistor with $h_{ie} = 1100\Omega$, $h_{fe} = 50$, $h_{re} = 2.4 \times 10^{-4}$, $h_{oe} = 25 \ \mu A/V$, is to drive a load of 1K Ω in CB amplifier arrangement. Estimate A_V , A_I , $R_i \& R_0$?	Evaluate	9
8	Design a fixed bias circuit using silicon transistor, with the following specifications: $V_{CC} = 16V$, $V_{BE} = 0.7V$, $V_{CEQ} = 8V$, $I_{CQ} = 4$ mA & $\beta = 50$?	Evaluate	10
9	Design a self-bias circuit using silicon transistor to achieve a stability factor of 10, with the following specifications: $V_{CC} = 16V$, $V_{BE} = 0.7V$, $V_{CEQ} = 8V$, $I_{CQ} = 4 \text{ mA } \& \beta = 50$?	Evaluate	10

1.0			
10	Design a self-bias circuit for the following specifications: V_{CC} = 12 V, V_{CE} = 2V, I_C = 4mA, h_{fe} = 80. Assume any other design parameters	Evaluate	10
	required. Draw the designed circuit.		
11	Compute current gain, voltage gain, input and output impedance of the CB	Analyze	9
	amplifier if it is driven by a voltage source of internal resistance Rs=1k Ω .)	-
	The load impedance is $RL=1K\Omega$. The transistor parameters are hib= 22,		
	$hfb= -0.98, hrb=2.9 \times 10-4, hob=0.5 \mu A/V.$		
12	A common collector circuit has the following components R1= $27k\Omega$,	Evaluate	9
	$R2=27k\Omega$, $Re=5.6k\Omega$, $RL=47k\Omega$, $Rs=600\Omega$. The transistor parameters are	<u>L</u> , alante	-
	hie=1k Ω , hfe=85 and hoe=2 μ A/V. Determine Ai, Ri, Av, Ro.		
13	A common Emitter circuit has the following, components. $Rs=1k\Omega$,	Evaluate	9
10	$R1=110K\Omega$, $R2=12K\Omega$, $Rc=6K\Omega$, h-parameters are hie=1.2K, hre=2.5*10 ⁻⁴ ,	L'uluite	
	hfe=75, hoe=25uA/V. Draw the equivalent hybrid model and calculate Ai,		
	Ri, Ro and Av?		
14	The h-parameters of a transistor used in a CE circuit are hie = $1.0 \text{ K}\Omega$, hre=	Evaluate	9
11	$10 \times 10 - 4$, hfe = 50, hoe = 100K mho. The load resistance for the transistor is	L'uluite	,
	$1K\Omega$ in the collector circuit. Determine Ri, Ro, AV & Ai in the amplifier		
	stage (Assume $Rs = 1000$).		
	Determine AI, AV, RI, R0 of a transistor with hie =1.1K Ω , hfe=50, hre	Evaluate	9
	=205*10-4, hoe = 25μ A/V is connected in CE configuration as shown in		-
	fig.		
15	Ver		
	$R_{\rm T} = 10 {\rm K}$		
	$R_{F}=200K \lesssim T_{D} $		
	-MM-++2		
	V.		
	$(\overline{V_s})$		
	-Y F		
	Ri		
	UNIT-V		
	Field Effect Transistor and FET Amplifiers		
	SHORT ANSWER QUESTIONS		11
1	Why FET is called a voltage operated device?	Evaluate	11
2	List the important features of FET?	Remember	11
2		D 1	11

1	Why FET is called a voltage operated device?	Evaluate	11		
2	List the important features of FET?	Remember	11		
3	Draw the functional diagram of JFET?	Remember	11		
4	Give the classifications of FETs and their Apply areas?	Remember	11		
5	Define pinch off voltage?	Understand	11		
6	Draw the structure of an n-channel JFET?	Remember	11		
7	Define rd and gm?	Remember	11		
8	Draw the static characteristics curves of an n-channel JFET?	Understand	12		
9	Draw the drain characteristics of depletion type MOFET?	Remember	12		
10	Draw the small signal model of JFET?	Remember	11		
11	Draw the transfer characteristics for P-channel JFET?	Understand	12		
12	Draw the Drain V-I characteristics for p-channel JFET?	Remember	12		
13	Explain about ohmic and saturation regions?	Understand	12		
14	Draw the drain characteristics of an n-channel enhancement type MOSFET?	Remember	12		
LONG ANSWER QUESTIONS					
1	Explain the operation of FET with its characteristics and explain the different regions in transfer characteristics?	Understand	11		

2	Define pinch-off voltage and trans conductance in field effect transistors?	Understand	12
	With the help of neat sketches and characteristic curves explain the		
3	construction & operation of a JFET and mark the regions of operation on the	Apply	12
	characteristics?		
4	Explain how a FET can be made to act as a switch?	Remember	11
5	Bring out the differences between BJT and FET. Compare the three configurations of JFET amplifiers?	Remember	13
6	Create a relation between the three JFET parameters, μ , r _d and g _m ?	Create	11
7	How a FET can be used as a voltage variable Resistance (VVR)?	Remember	11
8	Explain the construction & operation of a P-channel MOSFET in enhancement and depletion modes with the help of static drain characteristics and transfer characteristics?	Understand	12
9	Sketch the drain characteristics of MOSFET for different values of V_{GS} mark different regions of operation.	Understand	12
10	Explain the principle of CS amplifier with the help of circuit diagram. Derive the expressions for A_V , input impedance and output impedance?	Understand	12
11	Write the expressions for mid-frequency gain of a FET Common Source?	Remember	12
12	Discuss the low frequency response of CD Configuration?	Remember	12
	What is the effect of external source resistance on the voltage gain of a		
13	common source amplifier? Explain with necessary derivations?	Remember	12
14	Draw the small-signal model of common drain FET amplifier. Derive	Analyze	11
	expressions for voltage gain and output resistance? For an n-channel silicon FET, find the pinch-off voltage and the channel		
15	half-width. Assume $a = 3 \times 10^{-6} \text{ m}$, $N_D = 10^{21} \text{ electrons/m}^2$, $V_{GS} = 0.5 V_p$, $I_D = 0$ and relative dielectric constant of silicon = 12.	Analyze	11
I	ANALYTICAL QUESTIONS		
1	In an n-channel FET, the effective channel width is 3×10^{-4} cm and the donor	Evaluate	13
1	impurity concentration is 10^{15} electrons/cm ³ Find the pinch-off voltage?	Evaluate	15
2	impurity concentration is 10^{15} electrons/cm ³ . Find the pinch-off voltage? A Common Source FET amplifier circuit with un bypassed R _S has the following circuit parameters: R _d = 15K, R _S = 0.5K, Rg = 1M, r _d = 5K, g _m = 5m mho and V _{DD} = 20 V. Determine A _V & R _{O?} A self-biased P – channel JFET has a pinch – off voltage of V _P = 5 V and	Evaluate	13
3	A self-biased P – channel JFET has a pinch – off voltage of $V_P = 5$ V and	Evaluate	12
	$I_{DSS} = 12$ mA. The supply voltage is 12 V. Determine the values of R_D and R_S so that $I_D = 5$ mA and $V_{DS} = 6V$?		
4	The P-channel FET has a $ I_{DS} = -12$ mA, $ Vp = 5V$, V_{GS} is 1.6 V. Determine I_D	Evaluate	14
	$G_{\rm m}$ and $G_{\rm m0}$?		
5	Data sheet for a JFET indicates that IDS=10mA and $V_{GS}(off)= -4V$.	Evaluate	14
5	Determine the drain current for $V_{GS}=0V$, -1V and -4V.	Louisaic	± 1
б	A Common Source FET amplifier circuit shown in Figure with un-bypassed R_s has the following circuit parameters: $R_d = 15K$, $R_s = 0.5K$, $Rg = 1M$, $r_d = 5K$, $g_m = 5m$ mhos and $V_{DD} = 20$ V. Calculate A_V , A_I , R_i and R_0 ?	Evaluate	13
	J [∨] _{DD}		
	3		
	§ Rd		
	+╄──┲━┫		
	$\begin{cases} R^{R} \\ R^{R} \end{cases}$		

7	For the circuit shown in fig. Determine	Evaluate	13
	i) Input impedance ii) output impedance and iii) voltage gain?		
	9 +10 V		
	R _D \$ 5.1 kΩ		
	$g_m = 2 mS$		
	$V_{T} \neq R_{G} \neq S$		
	1 4 <u>1</u> 1.5 V		
	+		
	In the common course EET complifier shown in given Figure the trans		14
8	In the common source FET amplifier shown in given Figure, the trans conductance and drain dynamic resistance of the FET are $5mA/V$ and $1M\Omega$		14
0	respectively. Estimate A_V , $R_i \& R_0$?	Evaluate	
	Vpp	2.1.0000	
	o o		
	SOK S		
	Vi Vas		
9	A self-biased n – channel JFET has a pinch – off voltage of $V_P = 5$ V and	Evaluate	13
	$I_{DSS} = 12$ mA. The supply voltage is 12 V. Determine the values of R_D and	Lvaluate	15
10	$R_{\rm S}$ so that $I_{\rm D} = 5$ mA and $V_{\rm DS} = 6V$?	F 1 /	1.4
10	The P-channel FET has a $ I_{DS} = -10$ mA, $ Vp =4V$, V_{GS} is 2.4 V. Determine	Evaluate	14
1.1	$I_{D_{1}}$ g _m and g _{mo.}		1.4
11	For common source amplifier operating point is defined by $V_{GSQ} = -2.5V$,	Evaluate	14
	$V_p = -6V$ and $I_{DQ} = 2.5mA$ with $I_{dss} = 8mA$. Calculate g_m , r_d , Z_i , Z_o and		
	voltage gain A_v . Assume $R_G = 1M$ ohms, $R_s = 1K$ ohms, $V_{dd} = +15V$ and		
	$R_D = 2.2 K$ ohms.		
12	In an n-channel FET, the effective channel width is 5×10^{-4} cm and the donor	Evaluate	13
10	impurity concentration is 10^{16} electrons/cm ³ . Find the pinch-off voltage? A Common Source FET amplifier circuit with un bypassed R _S has the	F 1 -	12
13	following circuit parameters: $R_d = 10K$, $R_S = 1.5K$, $Rg = 1M$, $r_d = 4K$, $g_m = 5m A/V$ and $V_{DD} = 15 V$. Determine $A_V \& R_{O?}$	Evaluate	13
14	For an n-channel JFET, $V_p = -2.0V$, $g_{mo} = 1.60m$ A/V and $I_{DSS} = 1.65m$ A,	Evaluate	14
	calculate I_D , g_m and V_{GS} for zero drift current.		
15	For an n-channel JFET, $V_p = -3.0V$, $g_{mo} = 1.40m$ A/V and $I_{DSS} = 2.65m$ A, I_D	Evaluate	14
	= 0.8mA, calculate the value of g_{m} .		
	-		

Prepared By: Mr. B. Naresh, Assistant Professor, Department of ECE

Date: 13th June, 2016

HOD, EEE